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What we really want to find is how much the green(leg) and the 
(purple) rod rotate around their pivot points 

Rotation point of object 

Moving point controlling the object rotation 

Point constraint since the  
r and R are constant (rigid) 
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By definition, dot product of two vectors = cos (angle) * product of the length of 
the two vectors. We will use this property to calculate angleS and angleT,  but 
before we do this, what else do we know? 

reference -y-axis 

reference -y-axis 

angleT 

angleS 



What about this case? 
  

R 

 
 
Now our vectors are the reference negative  
y-axis, the other vecD is represented by (x1,x0, y1,y0)  
therefore the dot product is: 
 
(0,-1) · ( x1-x0, y1-y0 ) 
0 * x1-x0 + -1 *( y1-y0 ) 
 
 
Which is -y1+y0. If we normalize this we end up with   
cos(angleT) = (-y1+y0) / (length of vecD)  
angleT = acos((-y1+y0)/ sqrt( (x1-x0) 2  + (y1-y0)2  ) 
Thus our rotation angle for the purple rod will be  
270 – (angleT-angleE) 
 
angleS = 180 – angleT (parallel lines) 
Thus our rotation angle for the green rod will be 
270 + angleS - angleG 
 
 
 
 
 

 

(x0,y0) 

(x1,y1) 
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reference -y-axis 

angleT 

angleE 

angleS 
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In the sample file, hscript looks like this: 

Using multi-line expressions, we have for the rotate on z variable of the purple object  

 
{ 

#  Expression calculating the angle of rotation, from the diagrams this is  270 – (angleT – angleE) 

#  D is the distance between the two centers of the circles 

#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points  

# 

R = .4; 

r = .3; 

x1 = -.5; 

y1 = 0; 

x0 = point("../xformRotatingWheel",40,"P",0); 

y0 = point("../xformRotatingWheel",40,"P",1); 

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2)); 

d = (R*R - r*r + D*D)/(2.0*D); 

angleE = acos(d/R); 

 

# next compute angleT 

angleT = acos( ( -y1 + y0 )/D); 

angleRot = angleT - angleE; 

return  270 - angleRot; 

} 
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In the sample file, hscript looks like this: 

Using multi-line expressions, we have for the rotate on z variable of the green object  

 
{ 

#  Expression calculating the angle of rotation, from the diagrams this is angleS + angleG 

#  D is the distance between the two centers of the circles 

#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points  

# 

R = .4; 

r = .3; 

x1 = -.5; 

y1 = 0; 

x0 = point("../xformRotatingWheel",40,"P",0); 

y0 = point("../xformRotatingWheel",40,"P",1); 

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2)); 

d = (R*R - r*r + D*D)/(2.0*D); 

angleG = acos((D-d)/r); 

 

# next compute angleT 

angleT = acos( ( -y1 + y0 )/D); 

angleS = 180-angleT; 

 

angleRot = angleS - angleG; 

return 270 + angleRot; 

} 
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in the sample file, 

dotPythagoreanInActionTopsyTurvy.hipnc 

- see the red nodes for the equations 

- the yellow node is where the rotation of the point 

(such as a gear that will drive the animation) is 

located 

- note that the negative y-axis is the reference 

axis 
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in the sample file, 

dotPythagoreanInActionTopsyTurvy.hipnc 
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