Fractals - mini Intro

Mandelbrot and Julia Sets

Let's talk numbers

- natural numbers - counting
- zero - nothing
- fractions - dividing pie
- negative numbers - debt
- real numbers - measure/draw
- imaginary numbers $\mathrm{i}=\sqrt{ }-1$ or $\mathrm{i}^{2}=-1$

Ta Da - complex numbers! A convenient invention by Euler to solve polynomial equations
ie. $5 x^{2}=-5$ so how do we solve this? In comes i (which doesn't exist but makes things easier to deal with)

Complex number

- Expressed in terms of two real numbers and i

Graphing

$$
f(x)=x^{2}
$$

Mandelbrot Set

$$
f_{c}(z)=z^{2}+c
$$

A Graph of the set of numbers as we iterate on zero
Let's say c = 1
$\mathrm{f}(0)=0+1=1$
$f(1)=1+1=2$
$\mathrm{f}(2)=4+1=5$
$f(5)=25+1$ and so on
Let's say c = - 1
$f(-1)=-1+1=0$
$f(0)=0+-1=-1$
$\mathrm{f}(-1)$...
Two behaviors: goes to infinity or is bounded The bounded numbers are the Mandelbrot set

So how does this work?

Pseudocode from Wiki

```
For each pixel (Px, Py) on the screen, do:
{
    x0 = scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.5, 1))
    y0 = scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1, 1))
    x = 0.0
    y = 0.0
    iteration = 0
    max_iteration = 1000
    while ( x*x + y*y < 2*2 AND iteration < max_iteration )
    {
        xtemp = x*x - y*y + x0
        y = 2*x*y + y0
        x = xtemp
        iteration = iteration + 1
    }
    color = palette[iteration]
    plot(Px, Py, color)
}
```

where relating the pseudocode this is just $z=x+i y$ and $z^{\wedge} 2=x^{*} x+i 2 x y-y^{*} y$ and $c=x 0+i y 0$ so the computation of x and y (just substituting and taking the real and imaginary parts separate creates the code expressions $x=\operatorname{Real}\left(z^{\wedge} 2+c\right)=x^{*} x-y^{*} y+x 0$ and then $y=\operatorname{Imaginary}\left(z^{\wedge} 2+c\right)=2 x y+y$.

Julia sets are similar but now we are looking at a specific value of c

```
For each pixel (Px, Py) on the screen, do:
{
    x0 = scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.5, 1))
    y0 = scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1, 1))
    x = 0.0
    y = 0.0
    iteration = 0
    max_iteration = 1000
    while ( x* x + y*y < 2*2 AND iteration < max_iteration)
    {
        xtemp = x*x - y*y + x0
        y = 2*x*y + y0
        x = xtemp
        iteration = iteration + 1
    }
    color = palette[iteration]
    plot(Px, Py, color)
}
```

where relating the pseudocode this is just $z=x+i y$ and $z^{\wedge} 2=x^{*} x+i 2 x y-y^{*} y$ and $c=x 0+i y 0$ so the computation of x and y (just substituting and taking the real and imaginary parts separate creates the code expressions $x=\operatorname{Real}\left(z^{\wedge} 2+c\right)=x^{*} x-y^{*} y+x 0$ and then $y=\operatorname{Imaginary}\left(z^{\wedge} 2+c\right)=2 x y+y$.

