
Bash 

by Deborah R. Fowler



• variables
• truth statements
• looping
• functions
• I/O
• lists
• classes/objects
• OOP

KEY CONCEPTS
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Last day we covered the basics of Object Oriented Programming and discussed classes and objects. Today we will continue that discussion, but first we will talk about something related to linux - Bash



What is bash? “Bourne-Again Shell” 

• is a shell

Great – what is a shell?

• Command language interpreter
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“Bourne-Again Shell” 

Stephen Bourne – author of direct ancestor of Unix shell sh

Other shells you may hear of: sh, ksh (Korn shell), csh (C 
shell)

Bash is the default shell
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Shells used:

Interactively – type from keyboard (you are already doing 
this)

Non-interactively – a script
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Shells like any high-level language you have

Variables
Flow control contructs (if, for, while)
Functions

Shells offer easy job control, command line duties
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Sites you may find useful:

https://help.ubuntu.com/community/Beginners/BashScripting

https://www.udemy.com/bash-scripting-for-beginners
(just the free previews are useful)
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https://help.ubuntu.com/community/Beginners/BashScripting
https://www.udemy.com/bash-scripting-for-beginners


So if you are in the linux shell (bash) type:

pwd
date
ls
cal
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Let’s put that into a script:

#!/bin/bash
pwd
date
ls
cal
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Try running it by typing ./nameOfFile

It will fail – the reason is you don’t have
permission to execute the code

chmod +x nameOfFile
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In-class

Go ahead and try this

#!/bin/bash
pwd
date
ls
cal
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The power of bash is that you can do many things within 
the script

Let’s run thru a few examples …

Presenter
Presentation Notes
Create a file, run it



#!/bin/bash
echo “Hello world”
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#!/bin/bash

# arguments can be used
echo “My first name is $1”
echo “My last name is $2”

Same this is a file called test, chmod +x test
./test  Kermit Frog
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#!/bin/bash

exec < $1
while read LINE
do 

echo $LINE 
done

./test filename

prints the lines 
of the file
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#!/bin/bash

exec < $1
let count=0
while read LINE
do 

((count=count+1))
done
echo “Number of lines: $count”

./test filename

count the lines

Presenter
Presentation Notes
An example of a loop that can be run on a file



We can continue expanding on this – it is another 
syntax to get used to but the key concepts of variables, 
selection, looping, functions are the same
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#!/bin/bash

echo “hello, $USER”
echo “Here are your files in directory, $PWD”
ls
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Variables:

x=“hello”             NOTE no spaces on either side of =

refer to it as 
$x
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If statements:

#!/bin/bash
x=3
y=4
if [ $x  -lt $y ]
then

echo “It is true”
fi
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For loops:

#!/bin/bash
for x in red green blue
do 

echo $x
done
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while loops:

#!/bin/bash
x=0
while [ $x  -lt 20  ]
do

echo $x
((x=x+1))

done
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functions:

#!/bin/bash
function kermit()
{

echo “Same concepts, different syntax”
}

kermit

Presenter
Presentation Notes
Same idea of selection, just different syntax



Functions with parameters (they are positional):

#!/bin/bash
function kermit()
{

echo “Same concepts, different syntax with $1”
}

kermit 10
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Bash scripting can be useful – however it does 
not support OOP – so back to python
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