
Bash

by Deborah R. Fowler

• variables
• truth statements
• looping
• functions
• I/O
• lists
• classes/objects
• OOP

KEY CONCEPTS

Presenter
Presentation Notes
Last day we covered the basics of Object Oriented Programming and discussed classes and objects. Today we will continue that discussion, but first we will talk about something related to linux - Bash

What is bash? “Bourne-Again Shell”

• is a shell

Great – what is a shell?

• Command language interpreter

Presenter
Presentation Notes
Bash stands for

“Bourne-Again Shell”

Stephen Bourne – author of direct ancestor of Unix shell sh

Other shells you may hear of: sh, ksh (Korn shell), csh (C
shell)

Bash is the default shell

Presenter
Presentation Notes
Bash is your terminal window language. It is the default.

Shells used:

Interactively – type from keyboard (you are already doing
this)

Non-interactively – a script

Presenter
Presentation Notes
You have already been using bash

Shells like any high-level language you have

Variables
Flow control contructs (if, for, while)
Functions

Shells offer easy job control, command line duties

Presenter
Presentation Notes
You have already been using bash

Sites you may find useful:

https://help.ubuntu.com/community/Beginners/BashScripting

https://www.udemy.com/bash-scripting-for-beginners
(just the free previews are useful)

Presenter
Presentation Notes
You have already been using bash

https://help.ubuntu.com/community/Beginners/BashScripting
https://www.udemy.com/bash-scripting-for-beginners

So if you are in the linux shell (bash) type:

pwd
date
ls
cal

Presenter
Presentation Notes
So you can type commands into the shell in linux (it is bash)

Let’s put that into a script:

#!/bin/bash
pwd
date
ls
cal

Presenter
Presentation Notes
You have already been using bash

Try running it by typing ./nameOfFile

It will fail – the reason is you don’t have
permission to execute the code

chmod +x nameOfFile

Presenter
Presentation Notes
You have already been using bash

In-class

Go ahead and try this

#!/bin/bash
pwd
date
ls
cal

Presenter
Presentation Notes
Create a file, run it

The power of bash is that you can do many things within
the script

Let’s run thru a few examples …

Presenter
Presentation Notes
Create a file, run it

#!/bin/bash
echo “Hello world”

Presenter
Presentation Notes
Create a file, run it

#!/bin/bash

arguments can be used
echo “My first name is $1”
echo “My last name is $2”

Same this is a file called test, chmod +x test
./test Kermit Frog

Presenter
Presentation Notes
Arguments can be used

#!/bin/bash

exec < $1
while read LINE
do

echo $LINE
done

./test filename

prints the lines
of the file

Presenter
Presentation Notes
An example of a loop that can be run on a file

#!/bin/bash

exec < $1
let count=0
while read LINE
do

((count=count+1))
done
echo “Number of lines: $count”

./test filename

count the lines

Presenter
Presentation Notes
An example of a loop that can be run on a file

We can continue expanding on this – it is another
syntax to get used to but the key concepts of variables,
selection, looping, functions are the same

Presenter
Presentation Notes
An example of a loop that can be run on a file

#!/bin/bash

echo “hello, $USER”
echo “Here are your files in directory, $PWD”
ls

Presenter
Presentation Notes
So $USER and $PWD are variables – they are standard variables but we can make our own

Variables:

x=“hello” NOTE no spaces on either side of =

refer to it as
$x

Presenter
Presentation Notes
So $USER and $PWD are variables – they are standard variables but we can make our own

If statements:

#!/bin/bash
x=3
y=4
if [$x -lt $y]
then

echo “It is true”
fi

Presenter
Presentation Notes
Same idea of selection, just different syntax

For loops:

#!/bin/bash
for x in red green blue
do

echo $x
done

Presenter
Presentation Notes
Same idea of selection, just different syntax

while loops:

#!/bin/bash
x=0
while [$x -lt 20]
do

echo $x
((x=x+1))

done

Presenter
Presentation Notes
Same idea of selection, just different syntax

functions:

#!/bin/bash
function kermit()
{

echo “Same concepts, different syntax”
}

kermit

Presenter
Presentation Notes
Same idea of selection, just different syntax

Functions with parameters (they are positional):

#!/bin/bash
function kermit()
{

echo “Same concepts, different syntax with $1”
}

kermit 10

Presenter
Presentation Notes
Same idea of selection, just different syntax

Bash scripting can be useful – however it does
not support OOP – so back to python

Presenter
Presentation Notes
Same idea of selection, just different syntax

	Bash ��by Deborah R. Fowler
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

